Factors and Zeros of Polynomials

Fundamental Theorem of Algebra

Quadratic Formula

Special Factors
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Binomial Theorem
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(x + y)* = x* + 43y + 6x%2 + 4xy® + y*

Factoring by Grouping

Arithmetic Operations

Exponents and Radicals
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Let p(x) = a,x" + a,_x""' + - - - + a;x + a, be a polynomial. If p(a) = 0, then a is a zero of the
polynomial and a solution of the equation p(x) = 0. Furthermore, (x — a) is a factor of the polynomial.

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these
zeros may be imaginary, a real polynomial of odd degree must have at least one real zero.

If p(x) = ax?® + bx + ¢, and 0 < b?> — 4ac, then the real zeros of p are x = (—b + Vb* — 4ac)/2a.
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Rational Zero Theorem
If p(x) = ax" +a,_x""'+ - - -+ ax + g, has integer coefficients, then every

rational zero of p is of the form x = r/s, where r is a factor of g, and s is a factor of a,.

acx?® + adx?® + bex + bd = ax*(ex + d) + b(ex + d) = (ax? + b)(cx + d)
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